Apakah Harta Modulatif? (50 contoh)



The hartanah modulatif ia adalah apa yang membolehkan operasi dengan nombor tanpa mengubah hasil persamaan. Ini amat berguna kemudian di algebra, kerana mendarab atau menambah oleh faktor-faktor yang tidak mengubah hasilnya, membolehkan penyederhanaan beberapa persamaan.

Untuk penambahan dan penolakan, menambah sifar tidak mengubah hasilnya. Dalam hal pendaraban dan pembahagian, mendarab atau membahagikan dengan satu tidak mengubah keputusan sama ada.

Faktor sifar untuk jumlah dan satu untuk pendaraban adalah modular bagi operasi tersebut. Operasi aritmetik mempunyai beberapa sifat selain sifat modulatif, yang menyumbang kepada penyelesaian masalah matematik. 

Operasi aritmetik dan harta modulatif

Operasi aritmetik adalah tambahan, pendaraban dan pembahagian penolakan. Kami akan bekerjasama dengan set nombor semulajadi.

Suma

Harta yang dipanggil elemen neutral membolehkan kami menambah addend tanpa mengubah hasilnya. Ini memberitahu kita bahawa sifar adalah unsur neutral jumlahnya.

Oleh itu, ia dikatakan sebagai modul jumlah dan oleh itu nama harta yang dimodifikasi.

Sebagai contoh:

(3 + 5) + 9 + 4 + 0 = 21

4 + 5 + 9 + 3 + 0 = 21

2 + 3 + 0 = 5

1000 + 8 + 0 = 1008

500 + 0 = 500

233 + 1 + 0 = 234

25000 + 0 = 25000

1623 + 2 + 0 = 1625

400 + 0 = 400

869 + 3 + 1 + 0 = 873

78 + 0 = 78

542 + 0 = 542

36750 + 0 = 36750

789 + 0 = 789

560 + 3 + 0 = 563

1500000 + 0 = 1500000

7500 + 0 = 7500

658 + 0 = 658

345 + 0 = 345

13562000 + 0 = 13562000

500000 + 0 = 500000

322 + 0 = 322

14600 + 0 = 14600

900000 + 0 = 900000

Harta modulatif juga dipenuhi untuk nombor keseluruhan:

(-3) +4+ (-5) = (-3) +4+ (-5) +0

(-33) + (- 1) = (-33) + (- 1) +0

-1 + 35 = -1 + 35 + 0

260000 + (- 12) = 260000 + (- 12) +0

(-500) +32 + (- 1) = (-500) +32 + (- 1) +0

1750000 + (- 250) = 1750000 + (- 250) +0

350000 + (- 580) + (- 2) = 350000 + (- 580) + (- 2) +0

(-78) + (- 56809) = (-78) + (- 56809) +0

8 + 5 + (- 58) = 8 + 5 + (- 58) +0

689 + 854 + (- 78900) = 689 + 854 + (- 78900) +0

1 + 2 + (- 6) + 7 = 1 + 2 + (- 6) + 7 + 0

Dan, begitu juga, untuk nombor rasional:

2/5 + 3/4 = 2/5 + 3/4 + 0

5/8 + 4/7 = 5/8 + 4/7 + 0

½ + 1/4 + 2/5 = ½ + 1/4 + 2/5 + 0

1/3 + 1/2 = 1/3 + 1/2 + 0

7/8 + 1 = 7/8 + 1 + 0

3/8 + 5/8 = 3/8 + 5/8 + 0

7/9 + 2/5 + 1/2 = 7/9 + 2/5 + 1/2 + 0

3/7 + 12/133 = 3/7 + 12/133 + 0

6/8 + 2 + 3 = 6/8 + 2 + 3 + 0

233/135 + 85/9 = 233/135 + 85/9 + 0

9/8 + 1/3 + 7/2 = 9/8 + 1/3 + 9/8 + 0

1236/122 + 45/89 = 1236/122 + 45/89 + 0

24362/745 + 12000 = 24635/745 + 12000 + 0

Juga untuk ketidakadilan:

e + √2 = e + √2 + 0

√78 + 1 = √78 + 1 + 0

√9 + √7 + √3 = √9 + √7 + √3 + 0

√7120 + e = √7120 + e + 0

√6 + √200 = √6 + √200 + 0

√56 + 1/4 = √56 + 1/4 + 0

√8 + √35 + √7 = √8 + √35 + √7 + 0

√742 + √3 + 800 = √742 + √3 + 800 + 0

V18 / 4 + √7 / 6 = √18 / 4 + √7 / 6 + 0

√3200 + √3 + √8 + √35 = √3200 + √3 + √8 + √35 + 0

√12 + e + √5 = √12 + e + √5 + 0

√30 / 12 + e / 2 = √30 / 12 + e / 2

√2500 + √365000 = √2500 + √365000 + 0

√170 + √13 + e + √79 = √170 + √13 + e + √79 + 0

Dan juga untuk semua yang sebenar.

2.15 + 3 = 2.15 + 3 + 0

144,12 + 19 + √3 = 144,12 + 19 + √3 + 0

788500 + 13.52 + 18.70 + 1/4 = 788500 + 13.52 + 18.70 + 1/4 + 0

3,14 + 200 + 1 = 3,14 + 200 + 1 + 0

2.4 + 1.2 + 300 = 2.4 + 1.2 + 300 + 0

√35 + 1/4 = √35 + 1/4 + 0

e + 1 = e + 1 + 0

7.32 + 12 + 1/2 = 7.32 + 12 + 1/2 + 0

200 + 500 + 25,12 = 200 + 500 + 25,12 + 0

1000000 + 540.32 + 1/3 = 1000000 + 540.32 + 1/3 +0

400 + 325.48 + 1.5 = 400 + 325 + 1.5 + 0

1200 + 3.5 = 1200 + 3.5 + 0

Penolakan

Memohon harta modulatif, sebagai tambahan, sifar tidak mengubah keputusan pengurangan:

4-3 = 4-3-0

8-0-5 = 8-5-0

800-1 = 800-1-0

1500-250-9 = 1500-250-9-0

Ia dipenuhi untuk bilangan bulat:

-4-7 = -4-7-0

78-1 = 78-1-0

4500000-650000 = 4500000-650000-0

-45-60-6 = -45-60-6-0

-760-500 = -760-500-0

4750-877 = 4750-877-0

-356-200-4 = 356-200-4-0

45-40 = 45-40-0

58-879 = 58-879-0

360-60 = 360-60-0

1250000-1 = 1250000-1-0

3-2-98 = 3-2-98-0

10000-1000 = 10000-1000-0

745-232 = 745-232-0

3800-850-47 = 3800-850-47-0

Untuk rasional:

3 / 4-2 / ​​4 = 3 / 4-2 / ​​4-0

120 / 89-1 / 2 = 120 / 89-1 / 2-0

1 / 32-1 / 7-1 / 2 = 1 / 32-1 / 7-1 / 2-0

20 / 87-5 / 8 = 20 / 87-5 / 8-0

132 / 36-1 / 4-1 / 8 = 132 / 36-1 / 4-1 / 8

2 / 3-5 / 8 = 2 / 3-5 / 8-0

1 / 56-1 / 7-1 / 3 = 1 / 56-1 / 7-1 / 3-0

25 / 8-45 / 89 = 25 / 8-45 / 89 -0

3 / 4-5 / 8-6 / 74 = 3 / 4-5 / 8-6 / 74-0

5 / 8-1 / 8-2 / 3 = 5 / 8-1 / 8-2 / 3-0

1 / 120-1 / 200 = 1 / 120-1 / 200-0

1 / 5000-9 / 600-1 / 2 = 1 / 5000-9 / 600-1 / 2-0

3 / 7-3 / 4 = 3 / 7-3 / 4-0

Juga untuk ketidakadilan:

Π-1 = Π-1-0

e-√2 = e-√2-0

√3-1 = √-1-0

√250-√9-√3 = √250-√9-√3-0

√85-√32 = √85-√32-0

√5-√92-√2500 = √5-√92-√2500

√180-12 = √180-12-0

√2-√3-√5-√120 = √2-√3-√5-120

15-√7-√32 = 15-√7-√32-0

V2 / √5-√2-1 = √2 / √5-√2-1-0

√18-3-√8-√52 = √18-3-√8-√52-0

√7-√12-√5 = √7-√12-√5-0

√5-e / 2 = √5-e / 2-0

√15-1 = √15-1-0

√2-√14-e = √2-√14-e-0

Dan, secara umum, untuk yang sebenar:

π -e = π-e-0

-12-1.5 = -12-1.5-0

100000-1 / 3-14.50 = 100000-1 / 3-14.50-0

300-25-1.3 = 300-25-1.3-0

4.5-2 = 4.5-2-0

-145-20 = -145-20-0

3,16-10-12 = 3,16-10-12-0

π-3 = π-3-0

π / 2- π / 4 = π / 2- π / 4-0

325,19-80 = 329,19-80-0

-54.32-10-78 = -54.32-10-78-0

-10000-120 = -10000-120-0

-58.4-6.52-1 = -58.4-6.52-1-0

-312,14-√2 = -312,14-√2-0

Pendaraban

Operasi matematik ini juga mempunyai unsur neutral atau sifat modulatif:

3x7x1 = 3 × 7

(5 × 4) x3 = (5 × 4) x3x1

Yang merupakan nombor 1, kerana ia tidak mengubah hasil pendaraban.

Ini juga benar untuk bilangan bulat:

2 × 3 = -2x3x1

14000 × 2 = 14000x2x1

256x12x33 = 256x14x33x1

1450x4x65 = 1450x4x65x1

12 × 3 = 12x3x1

500 × 2 = 500x2x1

652x65x32 = 652x65x32x1

100x2x32 = 100x2x32x1

10000 × 2 = 10000x2x1

4x5x3200 = 4x5x3200x1

50000x3x14 = 50000x3x14x1

25 × 2 = 25x2x1

250 × 36 = 250x36x1

1500000 × 2 = 1500000x2x1

478 × 5 = 478x5x1

Untuk rasional:

(2/3) x1 = 2/3

(1/4) x (2/3) = (1/4) x (2/3) x1

(3/8) x (5/8) = (3/8) x (5/8) x1

(12/89) x (1/2) = (12/89) x (1/2) x1

(3/8) x (7/8) x (6/7) = (3/8) x (7/8) x (6/7) x 1

(1/2) x (5/8) = (1/2) x (5/8) x 1

1 x (15/8) = 15/8

(4/96) x (1/5) x (1/7) = (4/96) x (1/5) x (1/7) x1

(1/8) x (1/79) = (1/8) x (1/79) x 1

(200/560) x (2/3) = (200/560) x 1

(9/8) x (5/6) = (9/8) x (5/6) x 1

Untuk yang tidak rasional:

e x 1 = e

√2 x √6 = √2 x √6 x1

√500 x 1 = √500

√12 x √32 x √3 = V√12 x √32 x √3 x 1

√8 x 1/2 = √8 x 1/2 x1

√320 x √5 x √9 x √23 = √320 x √5 √9 x √23 x1

√2 x 5/8 = √2 x5 / 8 x1

√32 x √5 / 2 = √32 + √5 / 2 x1

e x √2 = e x √2 x 1

(π / 2) x (3/4) = (π / 2) x (34) x 1

π x √3 = π x √3 x 1

Dan akhirnya untuk yang sebenar:

2,718 × 1 = 2,718

-325 x (-2) = -325 x (-2) x1

10000 x (25.21) = 10000 x (25.21) x 1

-2012 x (-45.52) = -2012 x (-45.52) x 1

-13.50 x (-π / 2) = 13.50 x (-π / 2) x 1

-π x √250 = -π x √250 x 1

-√250 x (1/3) x (190) = -√250 x (1/3) x (190) x 1

-(√3 / 2) x (√7) = - (√3 / 2) x (√7) x 1

-12.50 x (400.53) = 12.50 x (400.53) x 1

1 x (-5638.12) = -5638.12

210.69 x 15.10 = 210.69 x 15.10 x 1

Bahagian

Elemen neutral divisi adalah sama dengan pendaraban, nombor 1. Satu kuantiti tertentu dibahagikan dengan 1 akan memberikan hasil yang sama:

34 ÷ 1 = 34

7 ÷ 1 = 7

200000 ÷ 1 = 200000

atau apa yang sama:

200000/1 = 200000

Ini adalah benar untuk setiap integer:

8/1 = 8

250/1 = 250

1000000/1 = 1000000

36/1 = 36

50000/1 = 50000

1 = 1

360/1 = 360

24/1 = 24

2500000/1 = 250000

365/1 = 365

Dan juga untuk setiap rasional:

(3/4) ÷ 1 = 3/4

(3/8) ÷ 1 = 3/8

(1/2) ÷ 1 = 1/2

(47/12) ÷ 1 = 47/12

(5/4) ÷ 1 = 5/4

 (700/12) ÷ 1 = 700/12

(1/4) ÷ 1 = 1/4

(7/8) ÷ 1 = 7/8

Untuk setiap nombor tidak rasional:

π / 1 = π

(π / 2) / 1 = π / 2

(√3 / 2) / 1 = √3 / 2

√120 / 1 = √120

√8500 / 1 = √8500

√12 / 1 = √12

(π / 4) / 1 = π / 4

Dan, secara umum, untuk setiap nombor sebenar:

3.14159 / 1 = 3.14159

-18/1 = -18

16.32 ÷ 1 = 16.32

-185000.23 ÷ 1 = -185000.23

-10000.40 ÷ 1 = -10000.40

156.30 ÷ 1 = 156.30

900000, 10 ÷ 1 = 900000.10

1,325 ÷ 1 = 1,325

Harta modulatif penting dalam operasi algebra, kerana artifice mengalikan atau membahagikan elemen algebra yang nilainya adalah 1, tidak mengubah persamaan.

Walau bagaimanapun, jika anda dapat mempermudahkan operasi dengan pembolehubah untuk mendapatkan ungkapan yang lebih mudah dan menguruskan untuk menyelesaikan persamaan dengan cara yang lebih mudah.

Secara umum, semua sifat matematik diperlukan untuk kajian dan perkembangan hipotesis sains dan teori.

Dunia kita penuh dengan fenomena yang sentiasa diperhatikan dan dikaji oleh saintis.

Fenomena ini dinyatakan dengan model matematik untuk memudahkan analisis dan pemahaman berikutnya.

Dengan cara ini, anda boleh meramalkan tingkah laku masa depan, antara aspek lain, yang membawa manfaat besar yang memperbaiki cara hidup orang.

Rujukan

  1. Takrif nombor semulajadi. Diperolehi daripada: definicion.de.
  2. Bahagian bulat. Pulih daripada: vitutor.com.
  3. Contoh Harta Modulatif. Diperolehi daripada: ejemplode.com.
  4. Nombor semulajadi Diperolehi daripada: gcfaprendelibre.org.
  5. Matematik 6. Pulih daripada: colombiaaprende.edu.co.
  6. Sifat matematik. Diperolehi daripada: wikis.engrade.com.
  7. Sifat pendaraban: bersekutu, komutatif dan mengedarkan. Diperolehi daripada: portaleducativo.net.
  8. Sifat jumlahnya. Diperolehi daripada: gcfacprendelibre.org.